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Abstract

The standard Oliver—Pharr method for measuring the elastic modulus by depth-sensing indentation makes use of the
unloading response of the material as it is assumed that the unloading behaviour is purely elastic. However, under cer-
tain conditions, the unloading behaviour can be viscoelastic, and if the viscosity effects are not corrected, the calculated
modulus can be seriously erroneous. Feng and Ngan have proposed a correction formula which can eliminate the creep
effects. However, this formula has been proven to be correct for the case of linear viscoelasticity only; the general case of
power-law viscoelasticity has not been proven. In this paper, this formula is proved for the general power-law viscoelas-
tic situation using a Maxwell material model. Finite-element calculations are also performed to illustrate the result. The
correction formula is applied to experimental data on amorphous selenium at ambient and elevated temperatures and is
found to be effective in correcting for creep effects which are very prominent in this material.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Depth-sensing indentation has become a standard technique for the measurement of the elastic modulus
of small samples. In the well-known Oliver—Pharr method for modulus measurement (Oliver and Pharr,
1992), the reduced modulus E,, defined as
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is calculated from the contact stiffness S using the following formula which is derived from Sneddon’s solu-
tion (Sneddon, 1965) to the elastic contact problem between a half space and an axi-symmetric punch:

E=YE S )

2 V4.

Here v and E are Poisson’s ratio and Young’s modulus, and 4. is the tip-sample contact area at full load

P.x- The contact area A, is calculated from the contact depth /. through a pre-calibrated shape function
A. = flh.) of the indenter, and /. is given by

P,
hC:hmax_ mdxa 3
P ®)

where /i,.x 1S the maximum indenter displacement, and ¢ is a constant depending on the indenter geometry
(e =0.72 for the Berkovich tip).

Eq. (2) was derived based on the assumption that the material behaviour is purely elastic. However,
many experiments have indicated that creep effects usually occur during nanoindentation (Mayo and
Nix, 1988; LaFontaine et al., 1990; Baker et al., 1992; Ramman and Berriche, 1992; O’Connor and
Cleveland, 1993; Syed and Pethica, 1997; Lucas and Oliver, 1999; Feng and Ngan, 200la,b; Ngan
and Tang, 2002; Li and Ngan, 2004). In low-melting metals, indentation creep can occur before general
yield (Feng and Ngan, 2001a,b) but for high-melting metals, crystal plasticity is a pre-requisite condition
for indentation creep (Syed and Pethica, 1997; Feng and Ngan, 2001a,b). In extreme creeping situations,
the unloading curve can exhibit a “nose”, meaning that the indenter can continue to sink into the spec-
imen even though the load is decreasing. The conditions for the occurrence of unloading “nose” have
been investigated by Ngan and Tang (2002). Recently, it has also been demonstrated that the stress
exponent of nanoindentation creep exhibits a strong dependence on the indent size (Li and Ngan,
2004), indicating a transition of creep mechanism as indent size approaches the incipient plasticity
situation.

On the specific question of how indentation creep affects the calculated modulus, a number of reports
have indicated that the measured modulus can be seriously affected by creep (Chudoba and Richter,
2001; Feng and Ngan, 2001a,b; Feng and Ngan, 2002; Tang and Ngan, 2003). Summarising these findings,
indentation creep will exert significant effects on the measured modulus when (i) the material itself is low-
melting or soft, (ii) the load hold before unloading is too brief, (iii) the unloading rate is too slow, and (iv)
the full load is too large. For reasonably hard materials like metals or ceramics at testing temperatures low
compared to their melting points, the effects of creep can be eliminated by using an extended load hold or a
rapid unloading rate, as is perhaps well-known. However, for soft materials like polymers or biological tis-
sues, or if the aim of the experiment is to deliberately measure the elastic modulus at a high temperature
compared to the melting point, the load hold or the unloading rate required to eliminate creep effects
may be difficult to achieve in practice. Ngan and co-workers (Feng and Ngan, 2001a,b, 2002; Tang and
Ngan, 2003) have developed correction formulas to eliminate creep effects in the post-experiment, data-
processing stage. It was proposed that, in a viscoelastic situation, the correct elastic stiffness S, can be cal-
culated as
where S is the apparent contact stiffness dP/d% at the onset of unloading (P = load, & = indenter displace-
ment), &, is the tip displacement rate at the end of the load hold just prior to unloading, and P, is the
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unloading rate. The S, calculated this way should replace S in Eq. (2). Tang and Ngan (2003) have further
proposed that the Oliver—Pharr Eq. (3) in the viscoelastic situation should be replaced by

Prax 1 hh
hc = hmax - = hmax - Pmax o 5
€ s, £ (S 2 ) (5)

Compared to the Oliver-Pharr method, the method described by Eqgs. (4) and (5) involves the measurement
of the additional parameter A, (P, is a prescribed quantity). Here, /;, can be conveniently measured by mon-
itoring the creep behaviour during the load hold period prior to unloading. In their first paper, Feng and
Ngan (2001a,b) explained Eq. (4) using a ““superposition” approximation in which the overall indenter dis-
placement / at any time is the sum of a creep component and an elastic component, and each of these sat-
isfies their own constitutive law. The same superposition approximation was used to derive Eq. (5) by Tang
and Ngan (2003). The superposition assumption is of course only a phenomenological approximation and
in their second paper, Feng and Ngan (2002) gave a formal proof of Eq. (4) in the situation of linear vis-
coelasticity for a Maxwell spring-dashpot material model. The approach they used was the “correspond-
ence principle” which is only applicable to linear viscoelasticity (Sakai, 2002).

Eq. (4) has not been proven for the general situation of power-law viscoelasticity. Furthermore, Eq. (5)
has never been rigorously proven beyond the superposition approximation as mentioned above, although it
must be remembered that the original Oliver—Pharr Eq. (3) was also derived along a similar line involving
the superposition approximation and has similarly never been proven beyond such an approximation. Eq.
(3) is known to significantly underestimate the contact size if pile-up occurs around the indent (McElhaney
et al., 1998). In spite of this, the available experimental data on a range of materials (Feng and Ngan,
2001a,b, 2002; Tang and Ngan, 2003) seem to indicate that application of Egs. (4) and (5) can effectively
correct for creep effects in modulus measurement.

The purpose of this paper is to prove Eq. (4) for the general situation of power-law viscoelasticity. From
the above, it is clear that Eq. (5) is only an approximation and therefore no attempt is made to rigorously
prove its correctness. However, simulations by the finite element method (FEM) are performed in this work
to investigate the validity of Eq. (5) in different power-law viscoelastic situations. Finally, we also present
ambient and elevated-temperature experimental results on selenium to illustrate the conclusions. We choose
selenium because this material is known to exhibit significant power-law creep at ambient temperature.

2. Proof of correction formula for stiffness measurement
Consider the situation in which a half-space is deformed by a blunt indenter under load P as shown in
Fig. 1. The instantaneous contact area at time ¢ has a radius «, and the indentation depth is #. We prescribe

a Cartesian coordinate system x; (kK = 1-3) such that x; is along the indentation axis and x; = 0 marks the
surface of the half-space x; > 0. We assume the material occupying the half-space has a Maxwell-type

Load P

* j
4 h speed h Y

a

Fig. 1. Indentation into a half-space.
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viscoelastic behaviour, in which the elastic strain and the creep strain are additive. The stress—strain relation
is given by

m—1
éij = %éo (%Z) i—: + Sijk/dklv (6)
where, as before, () = 0()/0t (¢ = time), S;; = 0 — %JM is the deviatoric stress, o, = ,/%SUSU, Skt 1s the
elastic compliance matrix, &, and o, are material creep parameters with dimensions of strain-rate and stress
respectively, and m is the stress exponent. In Eq. (6), the first term is the creep component and the second
the elastic component. We consider a typical load schedule consisting of a load-hold period followed imme-
diately by an unloading period as shown in Fig. 2. The instant of the commencement of unloading is de-
noted as f,.

At the instants 7 = ¢, just prior to unloading and ¢ = ¢ just after unloading has begun, the strain rate
fields are given by Eq. (6) as

L 3. (o(t)\" ' S,(t o B

&(ty) = 560( (E h)> i(fn) +suou(ty) att=t, (7)
o o

. 3. (o(t)\" ' S,(¢ ,

81']0;) = 530 (%) % + S,-jkIO'k/(t;) at t = tﬁ. (8)

Note that in the above, we denote the stress fields at both instants of t = 7, and t = #; as 6(ty), oe(tn), and
Sif(tn), .. the stress fields at both instants are the same. This is so because the stress fields have to be con-
tinuous from ¢ = ¢, to ¢t = ¢, since the load P is continuous during this transition. What is discontinuous at
ty is the loading rate P, which is zero at ¢ = #; and negative at ¢ = ;. This discontinuity will cause corre-
sponding discontinuities in the strain rate and stress rate fields &;; and ¢;;, and hence, &; and 6,; are marked
as differently between Eqgs. (7) and (8). The jump in strain rate across #, is given by subtracting Eq. (7) from
Eq. (8), viz

Aéyj = &(ty) — &j(ty) = i Adu, 9)
where Ag;; = 6;;(1) — 6,(¢,) is the jump in stress rate across #,. The strain ¢ is associated with the displace-

ment u; through &; = (u;; + u;;)/2, so that Aé; is associated with the jump in velocity Ai; = i;(t,)) — i (t;,)
through

Egs. (9) and (10) indicate that {Ai;, Aé;, A6;;} may be regarded as the {displacement, strain, stress} of a

linear elastic problem, defined on the same half-space x; > 0 as the original specimen, and possessing
the same elastic compliance s;; as well. The boundary conditions for the {Ai;, Aé;, AG;;} problem are

Fig. 2. A general load schedule consisting of a load hold followed by unload.
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Aity = A = hy — Iy, for r = /33 +x2 < a, x3 =0, (11a)

AGy =0, k=1,2,3, forr=/x3+x3>a, x3=0, (11b)

and

Ay, =0, k=1,2, forr= m < a, x3 =0 for a sticking tip, (11c)
or

AGy =0, k=1,2, for r =4/x1 +x3 <a, x3 =0 for a smooth tip. (11d)

In Eq. (11a), i, = A(t}") and &y, = h(z;) and so Ak is the jump in the tip displacement rate across #,. Eqs. (9—
11) are equivalent to the indentation problem by a rigid, cylindrical flat-ended punch into an elastic half-
space, such that the punch displacement has a magnitude equal to Ak. This problem is depicted in Fig. 3,
and the flat-punch indentation problem in general has been solved by Sneddon for the case of isotropic elas-
ticity (Sneddon, 1965). In particular, Sneddon has shown that the relation between the indentation force P
and indenter displacement D in the flat-punch problem is given by (see Eq. (6.1) in Sneddon, 1965)

_ 12{_0 (12)
In the original indentation problem in Fig. 1, the indentation load P is given by
P=2n /0“ a33(r,x3 = 0)rdr. (13)
From this, the jump in the load rate from P, = P(t;) to P, = P(t) across #, can be obtained as
P,—P,=-2n /0" AG33(r,x3 = 0)rdr. (14)

From the Sneddon solution to the {Ai;, Aé;;, Ag;;} flat-punch problem defined by Egs. (9-11), the right
hand side of Eq. (14) is in fact equal to the right hand side of Eq. (12) with the substitution D = Ah. There-
fore, Eq. (14) becomes

Pu*thzaEr(l:lu*l:lh); (15)

where E, = E/(1—V?) is the reduced modulus defined in Eq. (1) for the case of rigid indenter. For an elastic
indenter, the “elastic”” problem presented in Egs. (9-11) needs to be solved as a contact problem between an
elastic half space and an elastic flat punch. Earlier works (Pharr et al., 1992) have shown that in this

Load = Pu - Ph

ﬁﬂ D =Ah
Elastic half-space with same 1\

elastic constants E and v as the

specimen

a

Fig. 3. The equivalent flat-punch indentation problem into the same elastic half-space as the specimen.
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situation, Sneddon’s Eq. (12) still holds except that E, is now given by Eq. (1) containing the indenter’s elas-
tic constants.

Eq. (4) follows directly from Eq. (15) by noting S, =2aE,, S = Pll/izu, and Py, = 0. The condition of
P, = 0 is valid only in an ideal load-hold condition; in actual load-hold experiments on severely creeping
materials, the significant creep displacement may lead to a large restoring force in the springs on which the
indenter tip is suspended in a typical depth-sensing instrument, and hence the actual load applied onto the
specimen may be decreasing with time (Feng and Ngan, 2001a,b). In some setup, this problem can be alle-
viated by a feedback loop which increases the set-point load as tip displacement increases to compensate for
the increasing spring force, but more often, the spring force problem may be left unattended. In the latter
scenario, the more general Eq. (15), which can be rewritten as

. (1/1_); (16

Se S P,) (1—-P,/Py)
in a form comparable to Eq. (4), should be used to correct for the creep effects. To use Eq. (16), the load
decaying speed Py, at ¢ = t, needs to be measured as well as the creep rate I

It should be noted that the derivation of Eq. (15) here is very general and is, for example, independent of

whether pile-up or sink-in occurs around the indentation. This is because pile-up or sink-in is allowed to
occur as appropriate as dictated by the solution of the governing Eq. (6). Also, the boundary condition
in Eq. (11a) for Az will be valid for any blunt indenter shape, and so Eq. (15) should be valid for any ind-
enter shape as long as it is blunt. Also, Eq. (11a) does not involve the datum of the displacement u;, and
hence, within the small-strain approximation, the initial shape of the free surface does not matter as long
as it is slowly varying. Hence, the history prior to the moment when Eq. (6) starts to become valid does not
matter. In other words, the analysis here for the behaviour around #, will be valid if a plastic indentation is
made, for example, during the rapid loading schedule prior to the load hold. In the next section, FEM cal-
culations will be used to show the validity of Eq. (15) in different situations with pile-up, sink-in or pre-
existing plastic indentation.

3. Finite element simulations

The purpose of the FE simulations here is to verify Eqgs. (4) and (5) in different situations of material
properties. The FE calculations were performed using the MSC.Marc package (Version 2000) with a mate-
rial model described by Eq. (6). The indenter used was a conical indenter with a semi-angle of 70.3° at the
apex. This geometry has the same area function as the often used Berkovich pyramidal indenter, namely,
A, = 24.5h5. The following stress exponent values were used to investigate a wide range of material behav-
iour from linear creep to ideal plasticity: m = 1, 5, 10, 30, 50, 100. The material parameter E¢,/a, was var-
ied within the range from 1 x 10~ '® (effectively zero) to 10s~' (where o, is set to be 1 unit in every case) to
study a wide extent of creep speed. In all calculations the Poisson’s ratio was fixed at 0.3. The calculations
were performed using the small-strain assumption. Owing to its unconditional stability, the implicit time
integration scheme is chosen for tracing the viscoelasticity material response. To ensure that the employed
time step is sufficiently fine, the time step setting is successively reduced by half until the difference of the
indentation depths predicted by using two consecutive time step settings at the onset of unloading is within
1%. On the other hand, the mesh density at the contact zone is successively doubled until the difference of
the computed E from Eq. (16) yielded by two consecutive mesh densities is within 1%.

Different unloading rates were also used to generate a range of apparent unloading stiffness S = dP/dh
between positive and negative values. Fig. 4(a) shows two simulated load—displacement curves with a neg-
ative value of S (when m = 1) and a nearly infinite value of S (when m = 10). The corresponding creep
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Fig. 4. Representative FE simulated load—-displacement curves (a) and displacement-time curves during load hold (b). & = 0.01,
P, =—0.2, E/o, =100, all arbitary units commensurate with data in Tables 1-4.

curves during load hold are shown in Fig. 4(b). It was also noted that at small values of m, sink-in occurs,
but as m increases, the free surface transits to the pile-up situation, in agreement with earlier FE simulations
(Bower et al., 1993). Fig. 5(a) and (b) show the typical surface topography of the sink-in and pile-up behav-
iour respectively at two different values of m. Tables 1-4 show the detailed numerical results from a repre-
sentative set of simulations. Here, the parameters are presented in an arbitrary set of units, i.e. g, is set to 1
unit of stress and F is in multiples of a,, lengths (%, a, etc.) are quoted in an arbitrary unit, and so is time.
To verify Eq. (4), the creep speed just prior to unloading, &y,, was calculated from the simulated displace-
ment vs time data for each situation. The Young’s modulus was calculated by first calculating S, from Eq.
(4), followed by substituting this for S in Eq. (2). The contact radius « here (see Fig. 1) was found directly
from the simulated surface topography instead of using Eq. (5), so that the results reveal only the accuracy
of Eq. (4) but not Eq. (5). Tables 1-4 show the simulated F at different input conditions. It can be seen that
in all simulated cases, the input Young’s modulus value and the calculated value differ at most by a few %,
and this difference is likely to be due to numerical uncertainties. In most cases, a pre-existing indent was
generated beforehand but this was not done in some cases to illustrate any difference. It can be seen from
Table 1 that whether a pre-existing indent is present or not does not affect the agreement between the input
and calculated Young’s modulus values. Therefore, Eq. (4) is verified.
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Fig. 5. FE simulated indent topography at peak load showing (a) the sink-in behaviour at m = 1, and (b) the pile-up behaviour at
m = 100. E/c, =100, &, = 0.01 s~'. The upper left triangle is the indenter. The scale bars show the von Mises stress magnitudes.

Also shown in Tables 1-4 are the contact depth /4, calculated using Eq. (5). Comparing with the value
observed from the simulated surface topography, it can be seen that Eq. (5) predicts fairly accurately the
observed contact depth in most cases, except the case when ¢, is large at 0.1 and m is small at 1, where
the error is quite severe. In other words, Eq. (5) is accurate except when creep is really fast with a small
stress exponent. However, the results in Tables 1-3 show that even in this case, the /. predicted by Eq.
(5) is still closer to the real 4. than that predicted by the Oliver—Pharr Eq. (3). The results in Table 2 also
show that at small m values (say <10), both the Oliver—Pharr Eq. (3) and the creep-correcting Eq. (5) over-
estimate /.. However, the /. from Eq. (5) is in closer agreement with the real /., which suggests that the
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Table 1
Computed finite-element results at different material parameters
& 107! 1072 1073 10710 1072
m=1 S —4.03676 —20.9876 59.4027 59.1274 59.1274
a 0.785701 0.315393 0.249425 0.249420 0.249420
Iy 0.0506848 0.0122893 1.56800 x 107> 0.000000 0.000000
E 101.593 104.544 107.860 107.862 107.862
ht 0.281351 0.112939 0.0893165 0.0893147 0.0893147
he 0.603126 0.195757 0.0934908 0.0933710 0.0933710
ht 0.418947 0.151100 0.0934338 0.0933710 0.0933710
m =100 N 95.8732 92.6295 89.8500 83.3169 74.3482
a 0.415229 0.412760 0.391148 0.366134 0.319228
Iy 1.16917 x 10~* 4.39040 x 107> 9.50680 x 107> 512500 x 1072 6.98840 x 107>
E 99.4805 100.074 100.236 101.375 103.286
ht 0.148689 0.147805 0.140066 0.131109 0.114312
hcb 0.133623 0.132151 0.127387 0.120693 0.109561
ht 0.133199 0.131992 0.127041 0.120507 0.109307
m=1¢ S —4.05193 —17.5690 28.6447 28.5096 28.5096
a 0.785586 0.275882 0.121543 0.121519 0.121519
Iy 0.0504910 0.0146159 3.30580 x 107> 1.00001 x 10~° 0.00000
E 102.344 102.049 106.727 106.747 106.748
ht 0.281310 0.0987905 0.0435233 0.0435147 0.0435147
hcb 0.601459 0.192486 0.0449224 0.0446693 0.0446693
ht 0.417985 0.139374 0.0448022 0.0446693 0.0446693
m=54 N —58.8374 —286.578 70.5775 28.6035 28.5096
a 0.493256 0.397766 0.217058 0.121649 0.121519
i 5.26602 x 1072 2.97075 % 10~° 135160 x 10~ 2.29830x 10~° 0.00000
E 98.8249 100.656 100.169 106.634 106.748
ht 0.176630 0.142436 0.0777262 0.0435613 0.0435147
hcb 0.186006 0.144503 0.0805077 0.0448590 0.0446693
ht 0.166871 0.133708 0.0755962 0.0447755 0.0446693

Input E =100, P, = —0.2 in all cases. Arbitrary units.
# Computed from observed a.

® Computed from Oliver—Pharr Eq. (3).

¢ Computed from Eq. (5).
4 Results from initially flat specimen.

overestimation of /. by the Oliver—Pharr Eq. (3) is due to creep effects. In other words, at small m values,
Eq. (5) can partially but not fully correct for creep effects. At large values of m (say > 30), both Eq. (3) and
Eq. (5) underestimate /. due to the occurrence of pile-up, but the discrepancy with the real /4 is not large.

4. Experimental investigation

In this section, experimental results on amorphous selenium (a-Se) will be presented to illustrate the use
of Egs. (4) and (5). The a-Se sample was prepared by melting a 99.99% pure Se button at 300° C followed
by quenching to room temperature to avoid crystallization. The as-quenched state already had a surface
smooth enough for indentation, and so no extra surface treatment was performed. The indentation exper-
iments were carried out on a nanohardness tester supplied by CSM Instruments SA (Peseux, Switzerland).
A simple heating facility was constructed by housing the nanohardness tester in an enclosed chamber with
high-power light bulbs inside. When the light bulbs are turned on, a constant temperature of up to ~40°C
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Table 2
Computed finite-element results at different stress exponents
m 1 5 10 30 50 100
S —20.9876 —40.0265 —115.708 108.856 98.5339 92.6295
a 0.315393 0.387374 0.394270 0.412507 0.412493 0.412760
Iy 0.0122893 2.82127x 1073 2.49446 x 1073 3.66086 x 10~ 1.73439 < 107* 4.39040 x 1072
E 104.544 101.187 99.4163 100.120 100.132 100.074
h? 0.112939 0.138715 0.141184 0.147714 0.147710 0.147805
he? 0.195757 0.143420 0.142514 0.134290 0.132950 0.132151
hs 0.151100 0.133168 0.133450 0.132960 0.132320 0.131992
Input £ =100, & = 1072, P, = —0.2 in all cases. Same arbitrary units as in Table 1.
# Computed from observed a.
® Computed from Oliver—Pharr Eq. (3).
¢ Computed from Eq. (5).
Table 3
Computed finite-element results at different unloading rates
P, —-0.2 -1 -10 —100
m=1 S —20.9876 662.416 79.5543 73.1204
a 0.315393 0.315393 0.315393 0.315393
hn 0.0122893 0.0122939 0.0122893 0.0122893
E 104.544 104.548 104.547 104.547
ht 0.112939 0.112939 0.112939 0.112939
he? 0.195757 0.160032 0.151994 0.151190
ht 0.151100 0.151101 0.151101 0.151101
m =100 S 92.6295 91.1500 90.8229 90.7903
a 0.412760 0.41276 0.41276 0.41276
hn 4.39040 x 1072 4.39040 x 1073 4.39040 x 1072 4.39040 x 1073
E 100.074 100.077 100.077 100.077
ht 0.147805 0.147805 0.147805 0.147805
he? 0.132151 0.132024 0.131995 0.131992
hs 0.131992 0.131992 0.131992 0.131992

Input E =100, &, = 1072 in all cases. Same arbitrary units as in Table 1.
# Computed from observed a.
® Computed from Oliver—Pharr Eq. (3).
¢ Computed from Eq. (5).

can be maintained inside the chamber. Higher temperatures are possible by adding more heating elements
but this was not done as we are not sure whether the nanoindenter will be damaged at higher temperatures.
Moreover, 40°C is a high enough temperature for a-Se to exhibit significant indentation creep.

To investigate the validity of Egs. (4) and (5), the load cycles shown in Fig. 6 were used. Here, at each
testing temperature, the load history comprising loading and load hold up to the point of unloading was
maintained the same. Then in different indentation tests at the same temperature, the unloading rates were
set to be different. Since the methods described in Egs. (2)—(5) are about using the unloading behaviour to
infer contact stiffness and size at the onset of, or just prior to, the unloading, the real contact stiffness and
contact size in all the different runs shown in Fig. 6 should be the same. The validity of Egs. (2)—(5) can then
be judged by checking whether the contact stiffness and size computed using these equations are indeed con-

stant or not.
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Table 4

Computed finite-element results at different input Young’s modulus

E 10 100 1000

m=1 S 20.2147 —20.9876 —15.7816
a 0.471910 0.315393 0.301193
I 8.39035x 1073 0.0122893 0.0129649
E 10.5465 104.544 1035.00
he 0.168986 0.112939 0.107854
hel 0.225218 0.195757 0.193946
he 0.194729 0.151100 0.146834

m =100 S 10.5320 92.6295 938.086
a 0.459259 0.412760 0.431123
I 1.09900 x 10~* 4.39040 x 107> 7.08960 x 10~°
E 10.3743 100.074 958.177
h 0.164456 0.147805 0.154381
h 0.165984 0.132151 0.130224
he 0.165585 0.131992 0.130198

i, = 1072, Py = —0.2 in all cases. Same arbitrary units as in Table 1.

% Computed from observed a.
® Computed from Oliver—Pharr Eq. (3).
¢ Computed from Eq. (5).
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Fig. 6. Typical loading schedules for indentation experiments on a-Se.

Fig. 7 shows the apparent contact stiffness S = dP/dh at the onset of unloading as well as the creep-cor-
rected stiffness calculating using Eq. (4), as a function of the unloading rate. At 19°C, a “‘nose” occurs in
the load-displacement curve during unloading at I0mN/min and 50 mN/min, and so the apparent stiffness
as shown in Fig. 7(a) is negative at these two unloading rates. At 100mN/min, no “nose” occurs in the
unloading curve but the effect of creep is still very large, so that the apparent stiffness is larger than the elas-
tic value. It is only when the unloading rate is higher than ~500 mN/min that the apparent contact stiffness
approaches a constant value as it should be. In Fig. 7(a) is also shown the creep-corrected stiffness calcu-
lated using the more general Eq. (16) which can handle the spring-force problem as mentioned in Section 2
above. It can be seen from Fig. 7(a) that the creep-corrected stiffness is all the way constant in all unloading
rates studied. This shows that Eq. (4) can effectively correct the creep effects in the contact stiffness. The
results at 35°C as shown in Fig. 7(b) show a similar conclusion. Fig. 8(a) and (b) shows the contact depth
he calculated using the Oliver—Pharr Eq. (3) as well as the creep-corrected Eq. (5). It can be seen that the
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Fig. 7. Effect of unloading rate on apparent and creep-corrected contact stiffness in a-Se at (a) 19°C with full load 200mN, (b) 35°C
with full load SmN.

Oliver—Pharr equation overestimates the contact size at slow unloading rates at which creep effects are sig-
nificant. The creep-corrected calculation gives contact depths that are reasonably constant as they should
be. Finally, in Fig. 9(a) and (b) are shown the Young’s modulus values calculated using the original Oliver—
Pharr method, i.e. Egs. (1)—(3), and the creep-corrected method, i.e., Egs. (4) and (5). In these calculations,
the Poisson’s ratio of a-Se was taken to be 0.312 (Etienne et al., 1979). At both 19°C and 35°C, the Oliver—
Pharr E value becomes negative at small unloading rates because of the negativity of the apparent contact
stiffness. At larger unloading rates, the Oliver—Pharr method overestimates the E, and at very fast unload-
ing rates the calculated E value approaches the real value. The creep-correction procedure here can be seen
to very effectively produce fairly constant E values. The creep-corrected E here is 8.3 + 0.3 GPa at 19°C
and 6.0 4+ 1.4 at 35°C. These are in reasonable agreement with the values of ~9.8GPa and ~6.3GPa ob-
tained by ultrasonic measurements at 19°C and 35°C respectively (Bohmer and Angell, 1993).

The stress exponent m of our a-Se sample can be obtained from the slope of the log-log plot of the inden-
tation strain rate A /h vs stress P/h* during load hold (Baker et al., 1992; Li and Ngan, 2004). An example of
this is shown in Fig. 10. The m of our a-Se sample is found to be 11.1 + 1.1 and 3.0 + 0.2 at 19°C and 35°C
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Fig. 8. Effect of unloading rate on calculated contact size in a-Se at (a) 19°C with full load 200mN, (b) 35°C with full load SmN.

respectively. It should be noted that the indent sizes at the two temperatures were not the same since the
load used and the material behaviour at the two temperatures were not the same. The plastic depths in fact
are ~4.5um and ~ 1.2um for the loads used at 19°C and 35°C respectively, as can be seen from Fig. 8. Li
and Ngan (2004) have shown that in a range of materials, the stress exponent exhibits a strong dependence
on the indent size, and in general the stress exponent of a smaller indent is lower. In other words, the var-
iation of the stress exponent values here from 3 to 11 for a-Se is likely a combined effect of temperature and
size variation. However, the present work is not a systematic attempt to investigate the temperature and size
effect of indentation creep in a-Se, although this can be an interesting topic to follow up in the future.

5. Discussion and conclusions

Only experimental results on a-Se were presented in this paper in the interest of space. Experimental re-
sults on polypropylene, another rapidly creeping material at room temperature, have already been pub-
lished elsewhere (Tang and Ngan, 2003), and the conclusions are similar. The present experimental
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Fig. 9. Effect of unloading rate on calculated Young’s modulus in a-Se at (a) 19 °C with full load 200mN, (b) 35°C with full load 5SmN.

results in a-Se show that the apparent contact stiffness is subject to severe creep effects at 19°C or higher
temperature. This illustrates that for very soft materials, indentation creep effects may severely influence the
accuracy of the measured Young’s modulus. Possible materials belonging to this category are biological tis-
sues, polymeric materials, or in fact any material at high enough temperatures. For these, a solution is to do
creep correction as stipulated here. For example, the creep correction procedure here has been used success-
fully to measure the Young’s modulus of human dentin (Kinney et al., 2003) and polypropylene (Tang and
Ngan, 2003). In the present work, the creep correction procedure has also been found to be effective in a-Se,
which is a power-law creeping material with stress exponent of 11 and 3 for the loads used at 19°C and
35°C respectively. An alternative solution to eliminate creep effects is to use high-frequency force modula-
tion with a lock-in amplifier to measure the contact stiffness (Oliver and Pethica, 1989). However, the con-
tinuous-stiffness function is usually not a standard module in commercial nanoindenters and this usually
has to be purchased at an extra cost. The creep correction method here, on the other hand, can be incor-
porated easily into the data analysis software of a standard machine at minimum cost.

To conclude, the present paper has provided a rigorous proof of a creep-correction formula for calcu-
lating the contact stiffness from depth-sensing indentation data, for the Maxwell power-law viscoelastic
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material model. Finite-element simulations have confirmed the validity of this correction formula in all the
cases simulated. The method was successfully applied to the Young’s modulus measurement in a-Se at 19°C
and 35°C.
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